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Abstract 6 

In order to overcome biases of crash-based safety analyses, research is looking for surrogate safety 7 

measures. A candidate are speeds derived from floating car data (FCD, or probe vehicle data). The 8 

goal of the review is to identify challenges and opportunities regarding using FCD speeds to 9 

develop surrogate safety measures. Specific points focused on the questions of sampling rate, study 10 

size, free-flow speed determination, reliability and validity. The review indicated several remaining 11 

knowledge gaps in relation to reliability of different FCD speed sources, sampling design, or 12 

estimation of free-flow speeds. Many of these gaps are likely to be quickly resolved at the current 13 

rate of research. The main conclusion is that benefits, limitations and nature of different FCD 14 

sources need to be carefully understood and considered before adopting FCD speeds as a surrogate 15 

safety measure. Further research and development opportunities exist in the subject area. 16 

Introduction 17 

Traffic speeds are one of the most significant factors in road safety performance. With increasing 18 

speed on roads both the likelihood and severity of crashes increase. These basic facts have been 19 

demonstrated within and across a number of methodological paradigms (Johnston, 2004; Jurewicz, 20 

Tofler, & Makwasha, 2015); however, speed-related crashes still occur. This calls for specific 21 

measurement and deeper understanding of various aspects of traffic speed in safety context. Such 22 

understanding will assist in development and implementation of effective road safety strategies and 23 

countermeasures. 24 

Traditional crash-based safety analyses have several limitations, including their reactive nature, and 25 

statistically low occurrence of crashes. Surrogate safety measures provide a valuable alternative. 26 

For example, the Power Model (Nilsson, 2004) relates the effects of mean speed changes to the 27 

number of crashes of different severity, and was validated in various road environments (Elvik, 28 

2009, 2013). However, not all surrogate safety measures proved to have reliable relationship with 29 

crashes; Tarko, Davis, Saunier, Sayed, & Washington (2009) noted that using speed as a standalone 30 

surrogate measure may be difficult due to the complexity of the speed-safety relationship. 31 

In this context, speeds derived from emerging sources of floating car data (FCD, also known as 32 

probe vehicle data) provide an interesting alternative. This approach to speed measurement is based 33 

on big data, sampled from vehicle fleets (data “collected by the vehicles themselves”; Bessler & 34 

Paulin, 2013). 35 

The goal of this paper is to identify opportunities and challenges regarding using FCD speeds to 36 

develop surrogate safety measures. This new use of FCD data could enhance research on speed and 37 

safety. Some examples of recent and emerging research explored in the paper include:  38 

a. using speed or speeding as a safety performance indicator, collected in a representative 39 

network of sites, for example to evaluate measures (national speed limit changes, 40 

campaigns, enforcement, etc.) and observe long-term national safety trends 41 

b. using speeding or harsh braking to identify dangerous events or assess driving behaviour 42 

c. using speed (or derived indicators) to identify and assess high-risk sites, as well as safety 43 

variations, for example due to the impact of curve radii on driving behaviour, effect of 44 
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changing road width, or traffic calming measures (both before-after and cross-sectional 45 

studies), for example to provide background for revision of local speed limits. 46 

Note that in this review, speeding is understood as driving in excess of posted speed limit. 47 

Compared to the previous reviews, which focused mainly on uses of on GSM (Global System for 48 

Mobile Communications) and FCD for traffic monitoring (e.g. Bessler & Paulin, 2013; Leduc, 49 

2008; Rose, 2006), the presented review focuses primarily on the safety perspective.  50 

Background 51 

Traditionally data for speed studies have been collected using a mix of methods: hand-held radar 52 

guns, roadside traffic counters, or fixed loops or tube counters. The common characteristic of these 53 

approaches is their spot character: the obtained speeds come from fixed points, which may not be 54 

representative of the rest of the entire studied road segment or location. Therefore, using 55 

conventional approaches to collect network-wide data is not likely to be feasible. 56 

Compared to traditional speed measurement techniques, FCD has two main benefits: 57 

 Coverage is not limited in space (suitable for network-wide speed surveys) 58 

 Availability of historical FCD data (ideal source for before-after studies) 59 

The vehicles (probes) are located through: 60 

 mobile phone triangulation (so called GSM data or cellular FCD), or 61 

 GPS navigation devices, registering GPS position and time of a vehicle along a known route 62 

enables calculation of average vehicle speed (this being the more accurate of the two; 63 

Bessler & Paulin, 2013) 64 

GPS signals may be registered by a portable device (smartphone or satellite navigation), or an in-65 

vehicle data recorder (IVDR). Both may also contain additional sensors (e.g. accelerometer, 66 

gyroscope) or a connection to a Controller Area Network (CAN bus), which enables recording data 67 

from other car sensors (odometer, fuel consumption, engine performance, etc. – such enhanced data 68 

are also called extended floating car data, xFCD; Bessler & Paulin, 2013). In the review, the term 69 

FCD will cover subset of data, mainly speed (from GPS) and acceleration (from accelerometer), 70 

which are clearly related to safety. 71 

Despite the mentioned benefits, it should be remembered that FCD was originally serving different 72 

purposes (navigation, traffic monitoring). In order to make sure that FCD may be confidently used 73 

in road safety research, the differences between the original purposes and mentioned research 74 

approaches and their implications will be made clear in the following parts: 75 

 Sampling rate 76 

 Study size 77 

 Free-flow speed determination 78 

 Reliability and validity 79 

Method 80 

This paper undertook a review of available literature from across a range of subjects and different 81 

study types pertaining to FCD speeds. Given the exploratory nature of this review, only sources 82 

with unclear methodology and FCD data sources were set aside. All other studies were considered 83 

in high-level reporting used in this review. Full manuscripts were reviewed to extract qualitative 84 

and quantitative information.  85 

The review parameters included: 86 

 Retrieved sources: 87 
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o papers from Web of Science, Scopus and TRID databases, including their references 88 

(snowballing) 89 

o “grey literature”: ARRB Knowledge Base, institute reports, naturalistic driving 90 

studies/field operational test (NDS/FOT) project deliverables 91 

o proprietary data specification sources. 92 

 Keywords: floating car data, speed, safety 93 

 Language: English 94 

 Time frame restriction: none 95 

The review findings were organised into logical subject areas pertaining to FCD data, its speed 96 

aspects, and its potential use to develop surrogate safety measures. These were then synthesised into 97 

general conclusions about opportunities and challenges. These subject areas were as follows: 98 

 Sampling rate 99 

 Study size 100 

 Free-flow speed determination 101 

 Reliability 102 

 Validity 103 

 Relevance to road safety 104 

Review results 105 

Sampling rate 106 

Typical FCD studies are conducted for traffic analyses (providing real-time traffic information, 107 

travel time predictions, etc.) based on GPS signals from vehicle fleets (taxis, commercial vehicles, 108 

but also private vehicles using mobile phones or satellite navigation). For these purposes, GPS 109 

signal sampling rate in order of seconds or minutes is common, see examples in Table 1. 110 

Table 1. FCD studies and their characteristics (sorted by sampling rate) 111 

Reference Data provider (fleet, location) Sampling rate 
Berntsen, Molnár, & 
Zděnek (2016) 

Telemotix (544 vehicles, Norway) 5 sec 

Wang et al. (2015, 2016) YOOTU (15,000 taxis in Shanghai) 10 – 15 sec 
Jurewicz et al. (2017) HERE and TomTom (Australia) 10 – 30 sec 
Bekhor, Lotan, Gitelman, & 
Morik (2013) 

Decell (> 100,000 vehicles in Israel) 30 sec 

Hrubeš & Blümelová (2015) RODOS (> 100,000 vehicles, Czech Republic) 1 min 
Pascale et al. (2015) WAY (13,000 trucks in Italy) 20 sec – 3 min 
Aarts, Bijleveld, & Stipdonk 
(2015) 

TomTom (the Netherlands) 5 min 

Sampling rates have a direct impact on available level of detail of obtained data. For example, 1 112 

second (i.e. 1 Hz) corresponds to approx. 14 and 25 metres driven, at typical urban/rural speed 113 

limits 50 and 90 km/h, respectively. This is why frequencies below 1 Hz (i.e. one or more records 114 

per second), are necessary for detailed studies. FESTA Handbook (Barnard, 2017) for FOTs 115 

explicitly states that “vehicle speed must be recorded in at least 10 Hz”. In addition, not only speed 116 

is interesting for safety studies. Acceleration data (or jerk, i.e. derivative of acceleration) is 117 

collected from accelerometer, usually at higher frequencies, compared to speed. The question is 118 

what frequency should be set. 119 

Current FCD data market offers various sensors, which are capable of providing instant data at rates 120 

of up to 1000 Hz – however, the choice influences the sample size, representativeness of the data, 121 
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the price of purchase, data storage and processing. Ideally, data collection requirements should be 122 

planned according to the observed phenomenon. For example, in a naturalistic driving studies of 123 

motorcycle riders (Laporte, 2010), based on typical riders’ reaction time 0.3 – 0.4 s and requirement 124 

of at least 15 signal samples for adequate instrumental description of the reactions, sampling 125 

frequency was set at 100 Hz. However, most naturalistic driving studies are not as strict: a review of 126 

such studies (Backer-Grøndahl, Phillips, Sagberg, Touliou, & Gatscha, 2009) listed typical values 127 

between 10 and 30 Hz; another summary (Welsh, Reed, Talbot, & Morris, 2010) recommended 50 128 

Hz as sufficient acceleration data sampling frequency. In general, 10 Hz seems to be typical 129 

sampling rate for large NDS/FOT (e.g. 100-Car NDS, SHRP2 NDS, euroFOT, SeMiFOT). 130 

On the other hand, for routinely collected data (not specifically planned for research), lower rates 131 

could suffice. For example, Bärgman (2015) distinguishes research data (often collected at 10 Hz or 132 

higher) and commercially collected data (usually with lower sample frequency, such as 4 Hz) – 133 

these may involve fleet monitoring or car insurers. 134 

In general, usefulness of data depends on the purpose of safety research. These may comprise 135 

monitoring speed trends, informing strategy and doing evaluations at road segment level, as well as 136 

more detailed studies, using acceleration/jerks. For selected examples of research studies, based on 137 

both data sources, see Table 2. 138 

Table 2. Research-oriented FCD studies and their characteristics (sorted by rate) 139 

Reference Location, fleet Sampling rate 
Naturalistic driving studies with dedicated data collection 

Reinau, Andersen, & Agerholm (2016) Denmark (ITS Platform) speed 1 Hz 
acceleration 10 Hz 

Pande et al. (2017) US (33 drivers) jerk 3 Hz 
Ryder, Gahr, Egolf, Dahlinger, & 
Wortmann (2017) 

Switzerland (57 drivers) speed 30 Hz 

Toledo, Musicant, & Lotan (2008) Israel (GreenBox) acceleration 40 Hz 
Naude et al. (2017) France (51 drivers) acceleration 100 Hz 

Studies which used data collected for other purposes 
Ambros et al. (2017) Czech Republic (Princip) speed 4 Hz 

acceleration 32 Hz 
Bagdadi & Várhelyi (2011) Sweden (Lund ISA trial) jerk 5 Hz 
Punzo, Borzacchiello, & Ciuffo (2011) US (NGSIM program) jerk 10 Hz 
Joubert, de Beer, & de Koker (2016) South Africa (Digicore) acceleration 50 Hz 

Apart from the mentioned GPS and accelerometers, there are instrumented vehicles, which involve 140 

for example cameras, VBOX sensors, Mobileye or LIDAR (see reviews by Carsten, Kircher, & 141 

Jamson, 2013; Valero-Mora et al., 2013). While they present excellent data acquisition systems for 142 

safety research, they are not likely to be feasible for large fleets due to their high cost. Large FCD 143 

fleets are necessary to provide large speed data sources for consideration.  144 

Study size 145 

Conventional sampling theory calculates minimum sample size based on allowable error and 146 

sample standard deviation of measured speeds. Traditional recommendation was measuring at least 147 

30, ideally 100 – 200 vehicles (e.g. Kraft, Homburger, & Pline, 2009; Narasimha Murthy & Mohle, 148 

2001; PIARC, 2003). Also TRB synthesis (TRB, 2011) of operating speed studies reports typical 149 

requirement “at least 100 per site.” 150 
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However, Smith, Zhang, Fontaine, & Green (2003) noted that this traditional approach is not fully 151 

transferable to FCD studies, where the conditions of sampling theory (data within each 152 

measurement interval is stationary, and variance does not change) do not hold. On the contrary, 153 

FCD depends on non-constant penetration rate (how large fleet sample should be equipped by FCD 154 

sensors, in order to make its data representative of total flow). Reviews summarized that in the 155 

highway environment penetration rates up to 3 % are sufficient (Vandenberghe, Vanhauwaert, 156 

Verbrugge, Moerman, & Demeester, 2012); in urban areas rates up to 5 % were recommended 157 

(Bessler & Paulin, 2013). 158 

In addition, on roads with lower volumes lack of data may be expected. Srinivasan & Jovanis 159 

(1996) argued that “probes cannot be used as a stand-alone source of travel time information, 160 

especially during off-peak periods and on lightly travelled corridors and low-speed roads, such as 161 

local and collector streets and minor arterials”. Nevertheless, recent expansion of FCD is changing 162 

this situation. Jurewicz et al. (2017) studied FCD on lower-volume roads and provided some 163 

guidance on necessary data collection periods (in numbers of months, based on the level of traffic 164 

volume). 165 

To produce national/state safety performance indicators, the speed data should come from the 166 

widest possible spectrum of locations to make it representative of the entire road network (or from 167 

the entire road network). EU SafetyNet project (Hakkert & Gitelman, 2007) developed detailed 168 

manual to this process. As a minimum, the sites should be sampled from sub-groups based on 169 

different road types, speed limits or number of lanes (approx. 30 sites per group). This could also 170 

serve as a minimum requirement for FCD speeds, if necessary. 171 

Free-flow speed determination 172 

In traffic engineering, there is an important concept of free-flow speed, as a standard measure, 173 

comparable across different sites and representing speed of  vehicles under low volume conditions, 174 

unhindered by traffic control devices. 175 

Spot-speed studies are done either collected automatically or manually. In the latter approach, free-176 

flowing vehicles are selected individually by an observer. Another, more objective approach is 177 

based on gaps between vehicles – various headway or gap thresholds are used to distinguish 178 

between vehicles following others or travelling freely. However, many different values have been 179 

used in international guidance, ranging from 3 to 12 s. Other thresholds have been even more 180 

pragmatic: for example in terms of hourly number of vehicles (ranging between studies from 200 to 181 

1000 veh/hr) (for a review see Ambros & Kyselý, 2016). 182 

Nevertheless, none of these approaches is feasible for FCD, which is collected from individual 183 

vehicles only, without being able to check whether they are influenced by other vehicles or not. 184 

Popular approach is thus restricting data collection to off-peak hours (Bekhor et al., 2013; Pline, 185 

1992; Wang et al., 2006), or night time (TomTom, 2016). However, this practice is likely to 186 

severely reduce the sample, especially in case of commercial vehicles, which usually travel during 187 

daytime. 188 

One could also ask whether night time speeds are representative of typical driver behaviour, as 189 

these speeds may be influenced by darkness, fleet composition, presence/absence of street lighting, 190 

and potentially increased speeding (Jurewicz et al., 2017). The question could be even more 191 

general: if we aim to study ‘unsafety’, then should we focus on speed data from the times and 192 

conditions when crashes happen most? If so, then why do we typically study free-flow conditions, 193 

where vehicles are not affected by presence of others? 194 

In general, free-flow speed issues have not been studied much in FCD literature. For example, 195 

Diependaele, Riguelle, & Temmerman (2016) attempted modelling the free-flow speeds with 196 



Full Paper – Peer Reviewed  Ambros & Jurewicz

 

Proceedings of the 2017 Australasian Road Safety Conference 
10 – 12 October, Perth, Australia 

 

probabilistic approach; Ambros et al. (2017) applied cluster analysis to separate free-flow speeds 197 

from all-vehicle speed data. For practical purposes, FCD speeds from off-peak periods may be 198 

assumed to be an estimate of free-flow speeds. The specific selection of these periods may need to 199 

be judgement-based.  200 

In case of FCD speeds it is important to make sure that speeds are: 201 

1. reliable when compared between various providers 202 

2. valid when compared to “ground truth” (traditional speed measurement methods) 203 

3. relevant to road safety 204 

Reliability 205 

Spasovic, Dimitrijevic, & Kim (2013) reported a US validation study for the FCD speeds provided 206 

by three commercial traffic data providers (INRIX, NAVTEQ, TrafficCast Dynaflow), using data 207 

from 4 roadways in New Jersey and New York. All three technologies were mostly within the 208 

acceptance limits for the average absolute speed error (≤ 16 km/h) and the speed error bias (≤ 8 209 

km/h). All of the studied technologies consistently overestimated the speed in the lowest speed bin 210 

(0 – 50 km/h), and consistently underestimated the speed in the highest speed bin (> 100 km/h). 211 

Another US study (Rapolu & Kumar, 2015) investigated whether there is a relationship between 212 

HERE, INRIX and Bluetooth speed data. Model free-flow speeds were found on an average 10 % 213 

higher than the observed Bluetooth speeds; Bluetooth and HERE travel speeds were in general 8 to 214 

16 km/h lower than INRIX speeds during the day. 215 

Validity 216 

Several comparative studies investigated quality of FCD-based travel times and speeds; see Table 3. 217 

Due to the wide range of study types, FCD sources, and differences in their robustness, only high-218 

level findings are provided in Table 3 to provide a general overview of validity 219 

Table 3. FCD-based comparative studies and their characteristics (sorted by study date) 220 

Reference Data description High-level findings 
Travel time studies 

Brockfeld, 
Lorkowski, Mieth, 
& Wagner (2007) 

4 days of data from 500-taxi FCD 
fleet in Nuremberg (Germany) vs. 
automated license plate recognition 
(ALPR) 

“travel times calculated by the 
system deliver valuable data” 

de Boer & Krootjes 
(2012) 

9 routes in Eindhoven (the 
Netherlands), penetration > 2 %, 
TomTom historic travel times vs. 
ALPR 

“FCD is accurate” 

Clergue & 
Buttignol (2014) 

4 routes in France (penetration 0.7 – 
4.3 %), TomTom vs. ALPR 

“differences are insignificant” 

Speed studies 
Yim (2003) cellular phone-based speeds vs. loop 

speeds over 1 month (four French 
freeways) 

cellular data speeds about 10 % 
lower on intercity freeways, higher 
(24 – 32 %) on an urban freeway 

Smith et al. (2003) cellular FCD (10-minute intervals) 
vs. point video 

FCD on average by 10 – 15 km/h 
higher

Bar-Gera (2007) cellular FCD vs. dual magnetic loop 
detectors (Israeli freeway) 

“a good match between the two 
measurement methods” 

Lattimer & INRIX FCD vs. ALPR data on 4 INRIX speeds on average 10 km/h 
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Glotzbach (2012) Florida freeways higher
Espada & Bennett 
(2015) 

EastLink in Melbourne, HERE travel 
speeds every 5 minutes vs. e-tag gate 
crossings 

probe travel speed estimates on 
average by 9 km/h lower 

Hrubeš & 
Blümelová (2015) 

Prague ring road (Czech Republic), 
2% penetration, FCD vs. loops  

“reasonable estimate of speed”, 
shown to be generally lower 

INRIX (2016) “The World’s Largest Independent 
Traffic Data Validation” (I-95 VPP) 

accurate within 16 km/h of actual 
traffic speeds on average 

Diependaele et al., 
2016 

Belgian rural roads, FCD vs. loops FCD-speed almost by 10 km/h 
higher than free-flow loop-speed 

Ambros et al. 
(2017) 

Czech rural roads, FCD vs. radar FCD-speed on average by 2 km/h 
higher

Some of the mentioned studies found FCD speeds higher than radar speeds; other studies (Aarts et 221 

al., 2015; Jurewicz et al., 2017) found an opposite tendency (FCD-speed lower than radar-speed). 222 

An explanation was given that FCD average speed relates to a whole road segment (i.e. including 223 

turning at intersections), while the traditional spot-speed relates to a single spot only (typically 224 

collected away from intersections; Aarts et al., 2015). Also, different FCD sources were used in the 225 

studies leading to different outcomes. It is thus important to understand the specifications of each 226 

FCD source and to sense-check (or calibrate) its speed outputs against a trusted ground truth source.  227 

To sum up, many studies concluded that FCD speed is reliable (not more than by 16 km/h different 228 

compared to ground truth or other providers’ data). For research purposes, this difference may be 229 

too large; if the differences are systematic, calibration may be a solution. 230 

Relevance to road safety 231 

Information, distilled from FCD studies, has a potential to enhance and improve the quality and 232 

coverage of speed and safety studies. In terms of the applications, which were outlined in the 233 

introduction: 234 

a. FCD-speeds may be used network-wide as a safety performance indicator 235 

This was an idea of a Dutch analysis reported by Aarts et al. (2015). After investigating 236 

performance of TomTom data, the source was found feasible for providing information for safety 237 

performance indicators (specifically speed levels). The study noted some limitations of FCD, for 238 

example that they do not provide information about speed differences between individual vehicles; 239 

privacy issues also limit analyses related to vehicle types or driver age/gender. 240 

Recent Australian studies are more positive. Jurewicz et al. (2017) found that FCD can be 241 

potentially translated to spot-speed equivalent using calibration models; the authors also provided 242 

an example of using FCD speeds for before-after evaluation of a speed limit change. A follow-up 243 

study (Jurewicz, Han, & Espada, 2018) used TomTom and HERE data, which can be proportionally 244 

split by vehicle type to test matching with actual fleet composition; this would help in estimating 245 

speeding and speed percentiles. 246 

b. FCD may be used to derive speeding or harsh braking/accelerating to identify dangerous 247 

events and assess driving styles 248 

There is clear evidence that some indicators, for example, related to speed and acceleration, are 249 

predictive of crash involvement risk (Sagberg, Selpi, Piccinini, & Engström, 2015). In this regard, 250 

FCD, which is linked to specific drivers, is a valuable source for assessing driving performance and 251 

driving styles (for example defensive/aggressive/inattentive), as well as driving exposure. This data 252 
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may then be compiled and used for so called usage-based insurance systems (Tselentis, Yannis, & 253 

Vlahogianni, 2017). For example, Feng et al. (2017), using criteria based on jerk metrics, 254 

successfully identified aggressive drivers. However, large amounts of collected data need to be 255 

analysed; Ellison, Greaves, & Bliemer (2015) mention various approaches, such as using pattern 256 

matching algorithms to identify patterns that are of interest and to focus analysis on these portions 257 

of the data, including verification through additional video footage. In addition, FCD were found 258 

influenced by exogenous factors, such congestion, construction, traffic light timings and other 259 

vehicles. The use of video cameras may reduce these influences, but requires a labour intensive 260 

manual processing. 261 

Fortunately, there are approaches to recognize conflicts within FCD without manually reviewing all 262 

video streams. A common approach is to analyse kinematic vehicle data to detect safety-critical 263 

events such as emergency braking or sudden steering. However, critical values (thresholds) of these 264 

“event triggers” vary significantly in the literature (Aichinger, Nitsche, Stütz, & Harnisch, 2016), 265 

for example: 266 

 longitudinal deceleration range from approx. 0.1 to 0.7 g (Johnson & Trivedi, 2011; 267 

Paefgen, Kehr, Zhai, & Michahelles, 2012) 268 

 critical jerks vary between 0.06 and 2 g/sec (Naude et al., 2017; Pande et al., 2017) 269 

Combined criteria were also used (Naude et al., 2017). Alternative approach is analysing all the 270 

collected data (so called risk space; Joubert et al., 2016). 271 

Note that smartphones are often used for collecting data for driver assessment. However, studies 272 

indicated they may not be fully suitable, compared to in-vehicle data recording. Paefgen et al. 273 

(2012) found smartphone FCD as overestimating critical driving events; Händel et al. (2014) 274 

reported that they are lacking reliability. 275 

c. FCD may be used to obtain speed and other indicators to identify and assess safety at specific 276 

locations 277 

Based on the above-mentioned risk thresholds and frequency of their occurrence on specific 278 

locations, high-risk sites may be identified. For some example studies, see Table 4. 279 

Table 4. Validation approaches in selected FCD-based studies (sorted by study date) 280 

Reference Location; indicator type Validation 
Mousavi, Parr, 
Pande, & Wolshon 
(2015) 

Louisiana highways; jerks 21 jerk value thresholds evaluated in the 
sensitivity analysis; segment jerk-rates 
compared to crash rates 

Reinau et al. (2016) Aalborg city (Denmark); 
speed and jerks 

visual comparison of crash location map 
vs. risk location map 

Ambros et al. (2017) Czech rural roads; speed speed consistency (i.e. differences between 
speeds in tangents and following curves) 
related to a long-term crash frequency 

Pande et al. (2017) California freeways; jerks relating 10 jerk thresholds (varying from 
0.50 to 2.75 ft/s3, with an increment of 
0.25) to crash frequency 

Obviously two approaches to validation exist: “theory-based” (confirmatory, testing hypotheses) or 281 

“data-based” (exploratory, data mining). 282 

In addition, collecting network-wide FCD also enables studying relationships between speed and 283 

driving/environmental characteristics. For example in Denmark, using FCD data from ITS Platform 284 

enabled quantifying the influence of road and shoulder width, curve radii, the extent of road 285 
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markings and the section lengths on speed (Andersen et al., 2016; Rimme et al., 2016). A model, 286 

based on Czech FCD data on rural roads, confirmed that increasing road width and enabling 287 

overtaking and climbing are associated with an increase of speed (Ambros et al., 2017). An Israeli 288 

FCD study (Gitelman et al., 2016) found that changing shoulder width, recovery-zone width (clear 289 

zone) or intersection has a potential to affect travel speeds. 290 

Unfortunately, in several studies explanatory power (R2) of the mentioned FCD-speed models was 291 

found relatively low (approx. 30 – 40%; Ambros et al., 2017; Andersen, Reinau, & Agerholm, 292 

2016; Gaca & Kieć, 2016). This finding may be explained by the characteristics of FCD: 293 

conventional spot-speed data are based on samples collected in more or less controlled conditions 294 

(daytime, season, weather, etc.) and may thus yield homogeneous results with high R2 values; on 295 

the other hand, FCD studies use an “anonymous” sample collected in various days, seasons and 296 

weather conditions, leading to heterogeneous results with lower R2 values. The low explanatory 297 

power may lead to insufficient reliability in cases when models are applied in different time and 298 

space from the original conditions. Therefore, the models could benefit from the improvement: e.g. 299 

adding potential additional explanatory variables, and/or considering vehicle and driver 300 

characteristics using random effect models (Bassani, Cirillo, Molinari, & Tremblay, 2016). 301 

Summary, discussion and conclusions 302 

The goal of this review was to identify challenges and opportunities regarding using FCD speeds to 303 

develop potential surrogate safety measures. 304 

The review has some limitations. Exploratory nature of the review permitted only cursory critique 305 

of the studies. In addition, the reviewed studies were of varied quality and objectives, which limited 306 

comparability of beyond the high level findings. Robust studies were given more prominence. In 307 

addition, as the reviewed field is quickly evolving, new studies are being published and may change 308 

the validity of the reported findings. 309 

Regarding conclusions, firstly it is important to consider benefits and limitations of FCD: 310 

 Compared to traditional spot-speed measurements, FCD has benefits of unlimited spatial 311 

coverage, as well as availability of historical data. However, FCD may not be sufficient in 312 

case of low traffic volumes. 313 

 Anonymity of FCD may limit distinguishing different vehicle types or driver characteristics. 314 

It also complicates determination of free-flow speed. 315 

 In a long run, continuity and quality of FCD measurements is beyond the direct sphere of 316 

influence of end users. 317 

Secondly it is important to remember that FCD was originally serving navigation and then traffic 318 

monitoring purposes. In order to make sure that FCD may be confidently used in road safety 319 

research, the differences from the original purposes need to be considered in context of surrogate 320 

safety measures: 321 

1. Sampling rate needs to be planned, based on requirements and type of data collected. 322 

2. Study size also needs to be planned, especially in conditions of low traffic volume. 323 

3. There is not any universal approach to free-flow speed determination, most are estimations 324 

only. 325 

4. Reliability and validity: FCD speed reliability and relation to the ground truth is uncertain 326 

and is strongly dependent on the compared sources. There are no guidelines for detecting 327 

risk thresholds (e.g. rapid braking), nor uniform approach to validating FCD speeds against 328 

safety. 329 

Some issues may be inherent to the method: for example, FCD is usually collected out of urban 330 

areas, with not-fully-representative vehicle fleet and drivers sample. Both pros and cons of FCD 331 

need to be carefully weighed, based on the requirements of specific research tasks. For example, 332 
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using FCD for network-wide speeding trends may not be as data-hungry as using FCD to assess 333 

specific driving styles. 334 

Nevertheless, FCD quality and coverage is continuously increasing. FCD found its way into 335 

commercial services, such as PTV Visum (with TomTom FCD) or VIA Traffic Solutions Software 336 

and ARRB Aperture tool (with HERE Traffic Analytics). With continuing data collection and 337 

investigations, focusing on the mentioned issues, added knowledge will enable developing FCD-338 

speed-based surrogate safety measures. 339 
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