vation	Traffic measures	Real dataset	Statistical methods	Results	Conclusion

Assessing the Speed Impact of Traffic Calming Devices Using Functional Data Analysis

34th ICTCT conference, Gyor, Hungary

27 - 28 October 2022

J. Elgner^{1,2}, J. Ambros¹, M. A. Muñoz³, V. Valentová¹, E. Fišerová²

¹Transport CDV - Research Centre, Brno, Czechia
 ²University Palacký Olomouc, Czechia
 ³Xouba Ingenieria SL, Madrid, Spain

Motivation o	Traffic measures	Real dataset	Statistical methods	Results oo	Conclusion
Outline					

- Motivation
- Types of traffic measures
- Real dataset
 - Description
 - Preparation
- Statistical methods
- Results
- Conclusion and future work

Motivation ●	Traffic measures	Real dataset	Statistical methods	Results oo	Conclusion
Motivatio	n				

Outside / inside urban area in the Czech Republic in 2021

- [1.] How many traffic accidents occur? 34,279 / 65,053 traffic accidents
- [2.] How many persons are killed as a result of traffic accidents? 345 (65%) / 186 (35%) persons
- [3.] How many persons are hurt as a result of excessive speed in villages? 4,128 (69%) / 1,871 (31%) persons

Motivation ●	Traffic measures	Real dataset	Statistical methods	Results oo	Conclusion
Motivatio	n				

Outside / inside urban area in the Czech Republic in 2021

- [1.] How many traffic accidents occur? 34,279 / 65,053 traffic accidents
- [2.] How many persons are killed as a result of traffic accidents? 345 (65%) / 186 (35%) persons
- [3.] How many persons are hurt as a result of excessive speed in villages? 4,128 (69%) / 1,871 (31%) persons

Motivation ●	Traffic measures	Real dataset	Statistical methods	Results oo	Conclusion
Motivatio	n				

Outside / inside urban area in the Czech Republic in 2021

- [1.] How many traffic accidents occur? 34,279 / 65,053 traffic accidents
- [2.] How many persons are killed as a result of traffic accidents? 345 (65%) / 186 (35%) persons
- [3.] How many persons are hurt as a result of excessive speed in villages? 4,128 (69%) / 1,871 (31%) persons

otivation	Traffic measures	Real dataset		
	••••			

Statistical methods

Results

Conclusion

Traditional traffic calming measures

- Speed Hump
- Median island
- Speed Table / Raised Crosswalks
- CVT (dynamic speed control system)

Motivation o	Traffic measures ○●○	Real dataset	Statistical methods	Results oo	Conclusion
Sardon's	special case	e			

- only existing through road in 40-kilometer single carriage way \rightarrow dual carriage way \rightarrow a complication in traffic calming
- Since 2020 there is a draft of a new road marking norm
- Some of the new marks included are:
 - Longitudinal road markings of a color other than white
 - Broken border lines
 - Dragon's teeth

Motivation o	Traffic measures	Real dataset	Statistical methods	Results	Conclusion
Objective	es				

Motivation o	Traffic measures	Real dataset ●ooo	Statistical methods	Results oo	Conclusion oo
Data d	lescription				
• Ic	ocation: Sardón de Duero	o (Spain)		Porto Portugal Lisbon Seelle ostor Malagal Gozitar	Andorra Baresiona Jalensia Algiers
		11170 4200	A CONTRACT	10/2011	

Motivation o	Traffic measures	Real dataset o●oo	Statistical methods	Results oo	Conclusion
Data des	cription				

- Data collection: 1. 1. 2020 31. 12. 2021
- Instalation of restrictions: 1. 11. 2020 31. 12. 2020
- GPS records (source: Xouba Ingenieria SL)
- Data registration: spatiotemporal data with period 1 record per 3 – 60 seconds
- cleaned data:
 - 1 record per max 15 seconds
 - Direction 1: 1,066 drives
 - Direction 2: 1,129 drives

Motivation o	Traffic measures	Real dataset ooeo	Statistical methods	Results oo	Conclusion
Data pre	paration				

Sardón de Duero, data with "orange" starting points

Sardón de Duero, distance setting

Motivation o	Traffic measures	Real dataset ooo●	Statistical methods	Results oo	Conclusion
Data pre	oaration				

Sardón de Duero, functional data with "orange" starting points

Motivation 0	Traffic measures	Real dataset	Statistical methods •00000	Results oo	Conclusion
_	 				

Functional observations

Speed profiles as functional observations

- speed as a function of distance from origin
- approximation by a cubic B-spline basis function

- t ... distance
- i ... curve index
- *j* ... population index
- k ... index of basis component
- p ... number of basis functions

Motivation o	Traffic measures	Real dataset	Statistical methods	Results oo	Conclusion
Presun	notions				

Let's suppose

• independence of random sample elements

Not necessary suppose

- ! independence of basis coefficients
- ! joint or marginal normality of basis coefficients
- ! orthogonality of bases

Nonparametric permutation tests

Motivation o	Traffic measures	Real dataset	Statistical methods	Results	Conclusion
Global te	esting				

Global test

• let's suppose two independence random samples of elements in L²

$$H_0: \mu_1(t) = \mu_2(t), \forall t \in T \text{ against } H_1 \exists t \in T: \mu_1(t) \neq \mu_2(t)$$

 $\mu_j(t)$... functional mean

• reject $H_0 \rightarrow$ interval testing

Motivation O	Traffic measures	Real dataset	Statistical methods	Results oo	Conclusion
Algorithm	l				

Algorithm of interval testing

- 1. interval testing
- 2. correction for multiple comparison

Motivation o	Traffic measures	Real dataset	Statistical methods ○○○○●○	Results oo	Conclusion
Interval te	esting				

1. Interval testing interval testing on all open interval $\mathcal{I} \subseteq T$ and its supplement $T \setminus \mathcal{I}$

$$H_0^\mathcal{I}: \mu_1^\mathcal{I} = \mu_2^\mathcal{I} ext{ against } H_1^\mathcal{I}: \mu_1^\mathcal{I}
eq \mu_2^\mathcal{I}$$

 $\mu_i^{\mathcal{I}} \dots$ restriction on \mathcal{I}

test statistics:

$$\mathcal{F}^{\mathcal{I}} = rac{1}{|\mathcal{I}|} \int_{\mathcal{I}} (\overline{y}_1(t) - \overline{y}_2(t))^2 dt$$

$$\mathcal{F}^{T\setminus\mathcal{I}} = \frac{1}{|T\setminus\mathcal{I}|} \int_{T\setminus\mathcal{I}} (\overline{y}_1(t) - \overline{y}_2(t))^2 dt$$

 $p\text{-values} \Rightarrow p^{\mathcal{I}} = \textit{lim}_{\mathcal{I} \rightarrow t} \sup \left(p^{\mathcal{I}} \right); p^{T \setminus \mathcal{I}}$

Motivation o	Traffic measures	Real dataset	Statistical methods 00000●	Results oo	Conclusion
Interval to	esting				

2. Correction for multiple comparison

adjusted p-value:

$$ilde{oldsymbol{
ho}}(t) = \sup_{\mathcal{I}: \ t \in \mathcal{I}} \left(oldsymbol{
ho}^{\mathcal{I}}(t), oldsymbol{
ho}^{\mathcal{T} \setminus \mathcal{I}}(t)
ight)$$

Control of Type I error:

- control of supplement interval \rightarrow subintervals are equally represented
- Interval-wise error rate (IWER) $\forall \mathcal{I} \subseteq \mathcal{T}$:

 $H_0^{\mathcal{I}} \text{ hold } \Rightarrow \mathbb{P}[\forall t \in \mathcal{I}, \tilde{p}(t) \leq \alpha] \leq \alpha, \ \forall \alpha \in (0, 1)$

Motivation o	Traffic measures	Real dataset	Statistical methods	Results ●○	Conclusion
Results					

Motivation o	Traffic measures	Real dataset	Statistical methods	Results o●	Conclusion
Results					

Motivation	Traffic measures	Real dataset	Statistical methods	Results	Conclusion
					•0

Conclusion and Future Work

Conclusion

- speed profiles of individual drives differ after traffic measures realization in both directions
- difference mainly before entry to village (vertical and horizontal road markings)

- Future work
 - Examination various traffic measures for similar locations
 - Rating of homogenity changes for speed profiles (IWT for variances)
 - Speed profiles modelling through functional data analysis

Motivation	Traffic measures	Real dataset	Statistical methods	Results	Conclusion
					00

Thank you for your attention

Jan Elgner jan.elgner@cdv.cz

References

- 1. Pini, A., Vantini, S. (2017). Interval-wise testing for functional data. Journal of Nonparametric Statistics, 29 (2), 407–424.
- 2. Ramsay, J.O., Silverman, B.W. (2013). Functional data analysis. New York, NY, Springer.
- Římalová, V., Elgner, J., Ambros, J., Fišerová, E. (2022). Modelling the driving speed on expressway ramps based on floating car data. Measurement 195, 110995.
- 4. Bessler, S., Paulin, T. (2013). Literature Study on the State of the Art of Probe Data Systems in Europe, FTW Telecommunications Research Center, Vienna.

This work was supported by the project Mathematical models [IGA_PrF_2022_008] and Ministry of Transport.