What drives speed on rural roads? Exploratory study using floating car data

Jiří Ambros Ondřej Gogolín

10/05/2016 5th NTSA Annual Scientific Seminar LiU, Norrköping, Sweden


Introduction: speed

- A key element in road design, linked to safety: speeding is the most frequent cause of road deaths on Czech roads
- What influences speed choice (and can be treated in order to manage speed)?
 - alignment (curvature, radius...)
 - cross section (shoulders, number of lanes...)
 - roadside, signing/marking, vegetation...

Introduction: speed measurement

- Traditionally: spot speed
 - roadside traffic counters
 - hand-held speed guns
 - o loops, tubes, etc.
- New approach: floating car data
 GPS positions of vehicle fleet units
 - not limited in time and space

Background/motivation

- Ideal (safe) driving = without unexpected changes, reflected in speed diferences
- Speed consistency = speed_{curve} speed_{tangent}
- Negative value = unexpected braking?
- Identified inconsistent curves can be treated (warning signs, speed limits, re-design...)
- Consistent design will lead to consistent speeds... and self-explaining roads

The study

- "What drives speed on rural roads?"
- Floating car data ⇒ speeds in tangents and curves
- Road environment data on potential speed choice factors
- The data were used to build multivariate models (factors \Rightarrow speed \Rightarrow accidents)

Data: speed

- Floating car data (FCD) from company fleets
- ~1000 vehicles, 8 months, frequency 4 Hz
- Selection of rural sections of national roads
- Segmentation into tangents and curves, discarding segments < 200 m and < 100 vehicles in each direction
- Detection of "uninfluenced" speeds \Rightarrow 85th percentile \Rightarrow weighted average

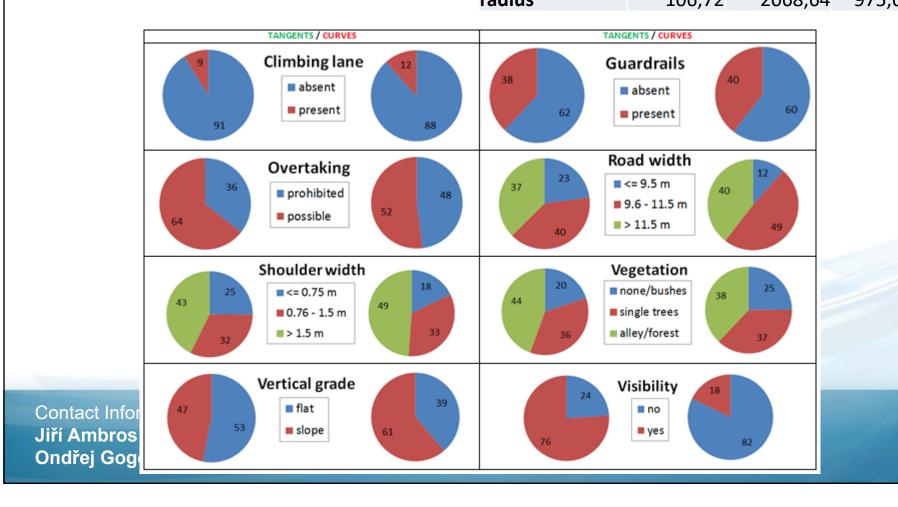
Data: potential risk factors

From databases, own measurement, GoogleMaps...

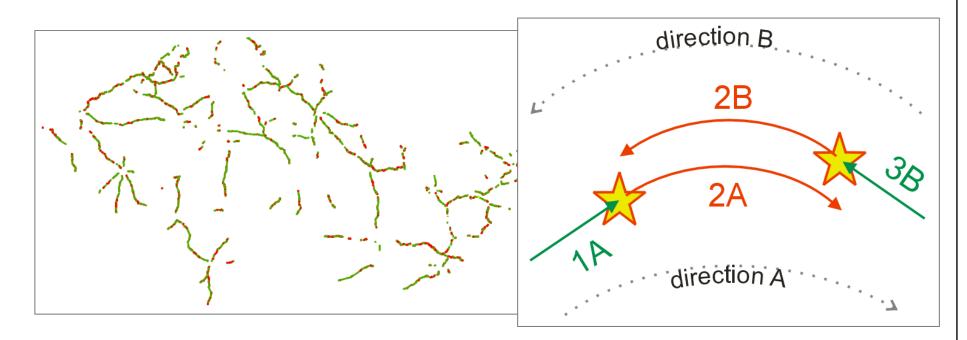
ROAD GEOMETRY:
Curvature change rat
Curve radius
Segment length
Vertical grade (Y/N)
Visibility (Y/N)

TRAFFIC:

AADT

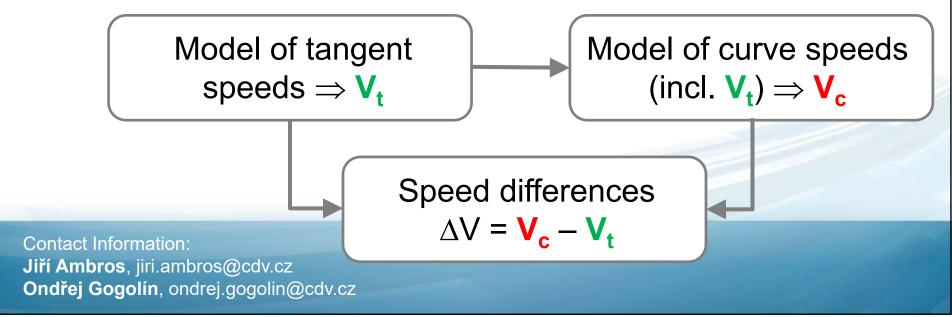

CROSS SECTION: Climbing lane (Y/N) Road width (3 cat.) Shoulder width (3 cat.) ross slope/superelevation Overtaking (Y/N)

ROADSIDE: Guardrails (Y/N) Delineator posts (Y/N) Vegetation (3 cat.)


5th NTSA Annual Scientific Seminar, Norrköping, Sweden, 10/05/2016

TANGENTS / CURVES

	Min.	Max.	Mean		Min.	Max.	Mean
AADT	2268,5	8846,5	5023,8	AADT	2268,5	8846,5	5054,4
length	201,32	3193,22	642,83	length	204,46	1477,32	407,57
CCR	,25	122,78	13,72	CCR	21,03	454,81	75,85
cross_slope	-1,7	3,5	1,3	superelevation	,3	4,4	1,5
				radius	106,72	2068,64	975,66


5th NTSA Annual Scientific Seminar, Norrköping, Sweden, 10/05/2016

- 509 pairs of curves and preceding tangents
- Discarded urban, divided, multilane... ⇒ sample of ~100 two-lane rural undivided road segments (not a complete network)
 - Added geo-located accidents

Why models?

- The objective is application for a road agency (all national roads), without additional field measurements... but our sample cover a part only
- From collected data we build prediction models for future network-wide application

Modelling

- 1. Exploratory analysis \Rightarrow discarding categorical variables with one of categories < 10%
- 2. Checking correlations between predictors \Rightarrow not using highly correlated pairs (> 0.5)
- Multivariate linear regression: backward stepwise, keeping the variables with significance level < 5%

Results: tangent speeds

		Unstandardized Coefficients				andardized oefficients		
Model			В	Std. Error		Beta	t	Sig.
1	(Constant)		92,639	3,393			27,305	,000
	AADT		-,001	,000		-,141	-2,023	,045
	length		,003	,001		,224	3,158	,002
	CCR		-,079	,033		-,173	-2,384	,018
	cross_slope		-1,974	,860		-,163	-2,297	,023
	road_width		1,597	,744		,157	2,147	,033
	overtaking		3,841	1,213		,237	3,165	,002
	visibility		2,901	1,287		,160	2,254	,026
	climbing_lane		10,043	2,190		,366	4,586	,000,

n = 117 $R^2 = 0.295$

- Length, width, overtaking/climbing, visibility increase speed
- AADT, curvature, cross slope *reduce* speed Strongest effects: overtaking/climbing, length

Contact Information: Jiří Ambros, jiri.ambros@cdv.cz Ondřej Gogolín, ondrej.gogolin@cdv.cz

Results: curve speeds

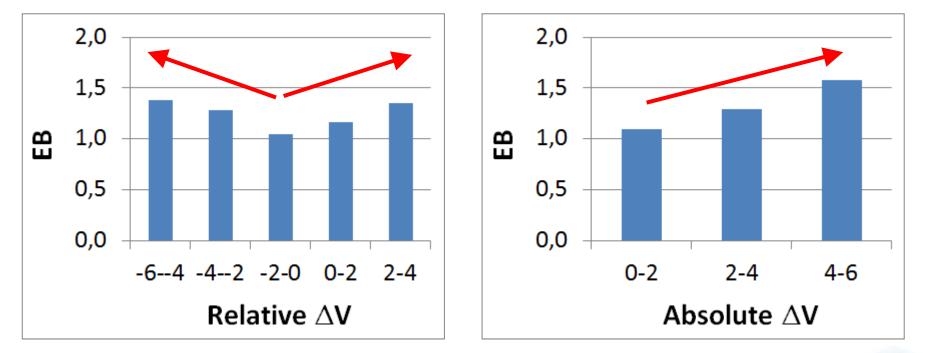
n = 129 R² = 0.323

		U <u>nstandardiz</u> ed Coefficients		Standardized Coefficients			
Model		В	Std. Error		Beta	t	Sig.
1 (Constant)		32,957	15,567			2,117	,036
tangent_speed_prediction		,642	,158		,337	4,052	,000
radius		,003	,001		,206	2,610	,010
superelevation		-1,835	,910		-,161	-2,017	,046
climbing_lane		4,272	1,992		,173	2,144	,034

- Preceding tangent speed, curve radius and climbing lanes *increase* speed
- Superelevation reduces speed
- Strongest effects: tangent speed, curve radius

Contact Information: Jiří Ambros, jiri.ambros@cdv.cz Ondřej Gogolín, ondrej.gogolin@cdv.cz

Validation (1/3)


Relationship directions are logical

- Overtaking/climbing and tangent length provide speeding opportunity
- Increased tangent speeds are transferred into following curves; radius also increases speed
- Further validation: comparison of speed differences to "objective safety" = empirical Bayes (EB) estimate of accident frequency

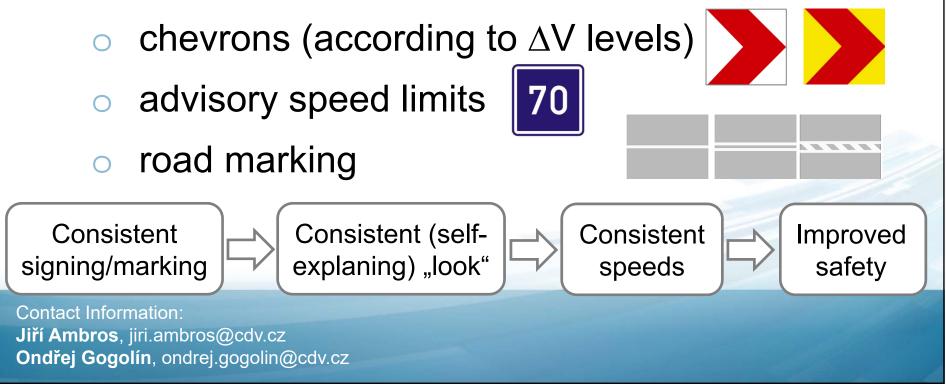
Validation (2/3)

- 6-year frequency of single-vehicle accidents (all severity levels)
- Simple prediction model (with AADT and length) combined with accident history ⇒ EB
- Two variants of speed differences
 - relative (braking/accelerating from tangent to curve)
 - absolute (braking/accelerating combined)

Validation (3/3)

- Both tendencies (braking/acceleration) increase accident frequency – minimal difference is the safest
- The same confirmed by absolute speed differences

Discussion


- Using FCD has some disadvantages
 - company fleets \Rightarrow biased sample of drivers
 - uncertain selection of free-flowing vehicles
 - low R^2 of regression models (often 0.3 0.5)
- Comparison of FCD with traffic counters
 - 7 profiles \Rightarrow FCD speed ~ 2 km/h higher
- Cross-comparison of methods would be valuable (Aalborg, BRSI, Technion...)

Conclusions (1/2)

- The project objective is to increase selfexplaining character of Czech national roads (i.e. decrease speed differences)
- To this end we developed a method of identification of speed inconsistencies
- During analysis of speed data we found strong influence of several variables

Conclusions (2/2)

- Overtaking possibility, tangent length, curve radius increase speed ⇒ reconstructions?
- Uniform low-cost treatments may also help

Thank you for your attention!

Jiří Ambros jiri.ambros@cdv.cz

Ondřej Gogolín *ondrej.gogolin*@cdv.cz

CDV – Transport Research Centre Líšeňská 33a 636 00 Brno Czech Republic