

* jiri.ambros@cdv.cz

Where and when do drivers speed? A feasibility study of using probe vehicle data for speed enforcement planning Jiří Ambros*, Jan Elgner, Richard Turek, Veronika Valentová | CDV – Transport Research Centre, Brno, Czech Republic

INTRODUCTION

- Speed is the most critical road safety factor.
- Speeding contributes to 30–40% fatal crashes.
- Speed management ... enforcing compliance with speed limits

Where and when do drivers speed? – The answer is useful for enforcement planning. Instead of relying on crashes, we used speed(ing) from probe vehicle data.

We studied feasibility of using probe data from the perspective of speed enforcement planning. . Sample of probe data was validated through comparison with average speed control data. 2. Descriptive analysis was performed, focusing on speeding in individual hour intervals. 3. Statistical models explained which road parameters contribute to speeding.

DATA

Five road corridors in Prague identified by Traffic Police Directorate as prone to speeding

- Length 1 7 km
- Relatively flat terrain
- Mostly 2 lanes in each direction, divided by median (some parts 1+1 lane, without median)
- Speed limits 50, 70, 80 km/h
- AADT 10,000 50,000 veh/day

Examples:

2+2 lanes + shoulders 45,000 veh/day speed limit 80 km/h

Probe vehicle data (Jan – Dec 2017) obtained from a third party - Approx. 10,000 company vehicles fleet

- No information on specific vehicles and drivers available
- Estimated 80/20 split between personal and heavy goods vehicles
- Data = GPS positions (1 3 per 1 min) + speed

MINISTRY OF EDUCATION YOUTH AND SPORTS

PLUS

TRANSPORT R&D CENTRE

ACKNOWLEDGMENTS

Probe vehicle data: Jaroslav Altmann (Princip a.s.) Average speed control data: Jan Polák (TSK Praha) Help with data processing and analysis: Richard Andrášik and Robert Zůvala (CDV) Consultations: Sabina Burdová, Pavel Fiala, Michal Hodbod' (Traffic Police Directorate)

Funding:

National Sustainability Programme – Transport R&D Centre (LO1610) Operational Programme R&D for Innovation (CZ.1.05/2.1.00/03.0064)

1+1 lane (no median) 10,000 veh/day speed limit 50 km/h

veh_id	time	lon	lat	speed
54849	12:50:14	14.417109	50.012518	42
54849	12:50:22	14.417260	50.012937	4
54849	12:50:34	14.417260	50.013182	30
54849	12:50:44	14.417195	50.014138	31
43236	12:27:40	14.416895	50.014042	31
43236	12:27:50	14.417088	50.013291	2
43236	12:28:10	14.417066	50.012529	43
43236	12:28:27	14.415414	50.010511	53
43236	12:28:44	14.415393	50.008248	52
	4 4 45 99		EA 000000	

ANALYSIS SAMPLE VALIDATION Example: (Intercept β_0) AADT Speed limit Number of lanes Median barrier Roadside activities

Horizontal alignment

R2 = 0.60

0.51

Next steps? optimization of enforcement, revision of speed limits...