ATRAMALMEEING
January 13-17, 2019 > Washington, D.C.

* jiri.ambros@cdv.cz

Where and when do drivers speed? A feasibility study of using probe vehicle data for speed enforcement planning Jirí Ambros*, Jan Elgner, Richard Turek, Veronika Valentová | CDV - Transport Research Centre, Brno, Czech Republic

INTRODUCTION

- Speed is the most critical road safety factor.
- Speeding contributes to $30-40 \%$ fatal crashes
- Speed management ... enforcing compliance with speed limits

Where and when do drivers speed? - The answer is useful for enforcement planning. Instead of relying on crashes, we used speed(ing) from probe vehicle data.

We studied feasibility of using probe data from the perspective of speed enforcement planning 1. Sample of probe data was validated through comparison with average speed control data.
2. Descriptive analysis was performed, focusing on speeding in individual hour intervals.
3. Statistical models explained which road parameters contribute to speeding.

DATA

Five road corridors in Prague identified by Traffic Police Directorate as prone to speeding Length $1-7 \mathrm{~km}$
Relatively flat terrain
Mostly 2 lanes in each direction, divided by median (some parts $1+1$ lane, without median) Speed limits $50,70,80 \mathrm{~km} / \mathrm{h}$
-AADT 10,000-50,000 veh/day
Examples:

2+2 lanes + shoulders 45,000 veh/day speed limit $80 \mathrm{~km} / \mathrm{h}$

$1+1$ lane (no median) 10,000 veh/day speed limit $50 \mathrm{~km} / \mathrm{h}$

Probe vehicle data (Jan - Dec 2017) obtained from a third party Approx. 10,000 company vehicles fleet
No information on specific vehicles and drivers available Estimated 80/20 split between personal and heavy goods vehicles Data $=$ GPS positions ($1-3$ per 1 min) + speed

	lon lot
sease	
Seas	
${ }_{\substack{4328 \\ 4328}}$	(12.7x
${ }^{3238}$	
${ }^{43285}$	

ACKNOWLEDGMENTS
Probe vehicle data: Jaroslav Altmann (Princip a.s.).
Average speed control data: Jan Polák (TSK Praha)
Help with data processing and analysis: Richard Andrásik and Robert Zívala (CDV)
Funding: National Sustainability Programme - Transport R\&D Centre (LO1610)

ANALYSI

1. SAMPLE VALIDATION
(representativeness of sample of probe vehicle speed data against "ground truth" - average speed control data)
probe Vehicle data
AVERAGE SPEED

Example:

non-parametric statistical tests: on sections $<1 \mathrm{~km}$... differences $<4 \mathrm{~km} / \mathrm{h}$
3. EXPLANATORY MODELS OF SPEEDING

Response variable $=$ speeding
Explanatory variables = road parameters

$$
(\text { speeding })_{i}=\beta_{0}+\sum_{j=1}^{n}\left(\beta_{j} \cdot x_{j}\right)
$$

Variables	Categries	Medium speeding model $\beta_{j} \quad$ Sig.		Total speceding model ${ }_{\text {Siel }}$	
$V_{\text {ander }}$				${ }^{\beta_{i}}$	${ }_{\text {S }}^{\text {Sigit }}$
AADT		${ }^{3264.100^{\circ}}$	0.068		0.019
Speed limit	$\underbrace{}_{\substack{\text { cokmh } \\ 70 \text { or } 80 \mathrm{kmh}}}$	${ }^{0.287}$	0.000	0.399	0.000
Number of lanes	${ }_{2+1}^{1+1}$	0.100	0.010	0.183	0.005
Median barrier	cable	0.112	0.066	0.222	0.025
	solid (seel of oncerete)	0.083	0.003	89	0.010
Roadside activities	$\underbrace{}_{\substack{\text { none } \\ \text { buidines }}}$		${ }_{0}^{0.0631}$		
	builinings and dus stops				
Horizonal aligment	${ }_{\substack{\text { curre } \\ \text { tangent }}}^{\text {ate }}$	${ }^{0.129}$	0.00	${ }_{0}^{0.209}$	0.002

2. DESCRIPTIVE ANALYSIS OF SPEEDING

71 homogeneous segments < 1 km

+ road parameters (cross-section, geometry...)
+ \% speeding (\# records / total)

Example:

\longrightarrow

DISCUSSION AND RESULTS
Potential analysis issues: Not based on free-flow speeds Sehicle fleet representatitivenes Selection of "ground truth" ? Link between speeding and crashes ? Some variables less quantitativ Multicollinear variables?

The feasibility study was successful Probe data help answer where and when drivers speed.
Useful for improving effectivenes of planning speed enforcement.

Future research: free-flow speed estimation validation, relationship to crashes

Next steps? optimization of enforcement revision of speed limits.

